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Dense vs. Sparse Matrices

Outline

© Dense vs. Sparse Matrices
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Dense vs. Sparse Matrices

Assignment

o Create the following matrix (1000 rows/columns)

@ Then, run the following lines of code

>> s = who('A'");
>> s.bytes

o How much storage does your matrix need?
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Dense vs. Sparse Matrices

Sparse matrix storage formats

@ Sparse matrix = matrix with relatively small number of
non zero entries, compared to its size.

o Let A € R™*™ be a sparse matrix with n, nonzeros.

@ Dense storage requires mn entries.
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Dense vs. Sparse Matrices

Sparse matrix storage formats (continued)

o Triplet format
o Store nonzero values and corresponding row/column
o Storage required = 3n, (2n, ints and n, doubles)
o Simplest but most inefficient storage format
o General in that no assumptions are made about sparsity

structure
o Used by MATLAB (column-wise)

S O O 0o
_ O O N O
O O W o o
O N oo O
_ o O O
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Dense vs. Sparse Matrices

Sparse matrix storage formats (continued)

o Triplet format
o Store nonzero values and corresponding row/column
o Storage required = 3n, (2n, ints and n, doubles)
o Simplest but most inefficient storage format
o General in that no assumptions are made about sparsity

structure
o Used by MATLAB (column-wise)

row=[1 2 1 2 5 3 3 4 1 5]

col=[1 12 2 2 3 4 4 5 5

S O O 0o
_ O O N O
O O W o o
O N oo O
_ o O O

val=[1 8 9 2 4 3 5 7 1 1]
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Dense vs. Sparse Matrices

Other sparse storage formats

e Compressed Sparse Row (CSR) format
e Store nonzero values, corresponding column, and pointer
into value array corresponding to first nonzero in each row
e Storage required = 2n, +m
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Dense vs. Sparse Matrices

Break-even point for sparse storage

o For A € R™*" with n, nonzeros, there is a value of n,
where sparse vs dense storage is more efficient.

o For the triplet format, the cross-over point is defined by
3n, = mn

o Therefore, if n, < "§* use sparse storage, otherwise use
dense format

o Cross-over point depends not only on m,n,n, but also on
the data types of row, col, val

Storage efficiency not only important consideration

o Data access for linear algebra applications
o Ability to exploit symmetry in storage
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Dense vs. Sparse Matrices

Create Sparse Matrices

Allocate space for m x n sparse matrix with n, nnz
e S = spalloc(m,n,n;)

Convert full matrix A to sparse matrix S

e S = sparse (A)
o Create m x mn sparse matrix with spare for n, nonzeros
from triplet (row,col,val)

e S = spalloc(row,col,val,m,n,n;)

(]

Create matrix of 1s with sparsity structure defined by
sparse matrix S

e R = spones(S)

Sparse identity matrix of size m x n
o I = speye(m,n)
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Dense vs. Sparse Matrices

Create Sparse Matrices

o Create sparse uniformly distributed random matrix
e From sparsity structure of sparse matrix S
e R = sprand(S)
o Matrix of size m x n with approximately mnp nonzeros and
condition number roughly & (sum of rank 1 matrices)

e R = sprand(m,n,p,x ")
o Create sparse normally distributed random matrix

e R = sprandn (S)
e R = sprandn(m,n,p, k1)
o Create sparse symmetric uniformly distributed random
matrix

e R = sprandn (S)
o R sprandn(m,n, p, k1)
o Import from sparse matrix external format

@ spconvert
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Dense vs. Sparse Matrices

Create Sparse Matrices (continued)

e Create sparse matrices from diagonals (spdiags)
o Far superior to using diags

o More general
@ Doesn’t require creating unnecessary zeros

e Extract nonzero diagonals from matrix
e [B,d] = spdiags(A)

Extract diagonals of A specified by d
e B = spdiags(A,d)

o Replaces the diagonals of A specified by d with the columns
of B

e A = spdiags(B,d,A)
Create an m x n sparse matrix from the columns of B and
place them along the diagonals specified by d 4

e A = spdiags(B,d,m,n)
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Dense vs. Sparse Matrices

Assignment

o Create the following matrix (1000 rows/columns)

using spdiags
@ Then, run the following lines of code

>> s = who('A'");
>> s.bytes

o How much storage does your matrix need?
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Dense vs. Sparse Matrices

Sparse storage information

Let S € R™*" gparse matrix

o Determine if matrix is stored in sparse format
e issparse (S)

o Number of nonzero matrix elements
e nz = nnz(S)

o Amount of nonzeros allocated for nonzero matrix elements
e nzmax (S)

o Extract nonzero matrix elements

o If (row, col, val) is sparse triplet of S
e val = nonzeros (S)
e [row,col,val] = find(S)
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Dense vs. Sparse Matrices

Sparse and dense matrix functions

Let S € R™*™ gparse matrix

o Convert sparse matrix to
dense matrix

e A = full(S) 1000

e Apply function (described

by function handle func)

500 -

1500 -

to nonzero elements of 2000}
sparse matrix
2500 -
e I =
spfun(func, S) 3000
o Not necessarily the same
as func (S) 3500¢
o Consider ook ‘ ‘ ‘ ‘ ‘ ‘ ‘
func = @exp 0 500 1000 1500 nziozﬂgsaa 2500 3000 3500 4000

o Plot sparsity structure of
matrix
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Dense vs. Sparse Matrices

Direct Solvers and Matrix Decompositions
Spectral Decompositions

Iterative Solvers

Reordering Functions

amd Approximate minimum degree permutation
Column approximate minimum degree
colamd .
permutation
Sparse column permutation based on nonzero
colperm
count
dmperm Dulmage-Mendelsohn decomposition
randperm Random permutation
Symmetric approximate minimum degree
symamd .
permutation
symrcm Sparse reverse Cuthill-McKee ordering
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Dense vs. Sparse Matrices

Sparse Matrix Tips

e Don’t change sparsity structure (pre-allocate)
o Dynamically grows triplet
o Each component of triplet must be stored contiguously
@ Accessing values (may be) slow in sparse storage as
location of row/columns is not predictable
o If S (i, 7) requested, must search through row, col to find
i,
o Component-wise indexing to assign values is expensive
o Requires accessing into an array
o If S(i,j) previously zero, then S (i, j)= c changes
sparsity structure
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Dense vs. Sparse Matrices

o Rank of a matrix A €¢ R™xn»

Defined as the number of linearly independent columns
rank A < min{m,n}

Full rank = rank A = min{m,n}

MATLAB: rank

o Rank determined using SVD

>> [rank (rand(100,34)), rank(rand(100,1)*rand(1l,34))]
ans =
34 1
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Dense vs. Sparse Matrices

(]

Gives some notion of size/distance
Defined for both vectors and matrices
Common examples for vector, v € R™
2-norm: ||v]la = vvTv
p-norm: [[vl, = (357, |vil?)
oo-norm: ||v||s = max |vy]
o MATLAB: norm (X, type)
o Common examples for matrices, A €
o 2-norm: [|Allz = omax(A)
o Frobenius-norm: ||[A]|r = \/Z:il Z?:1 |A;;2
MATLAB: norm (X, type)
o Result depends on whether X is vector or matrix and on
value of type
MATLAB: normest

o Estimate matrix 2-norm

o For sparse matrices or large, full matrices
CME 292: Advanced MATLAB for SC Lecture 3
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© Direct Solvers and Matrix Decompositions
o Background
e Types of Matrices
@ Matrix Decompositions
e Backslash
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Background

Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

Determined System of Equations

Solve linear system
Ax=b (1)

by factorizing A € R™*™

o For a general matrix, A, (1) is difficult to solve

e If A can be decomposed as A = BC then (1) becomes
By=b
o &)
X=Yy

o If B and C are such that (2) are easy to solve, then the
difficult problem in (1) has been reduced to two easy
problems

o Examples of types of matrices that are “easy” to solve witl

e Diagonal, triangular, orthogonal
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Background

Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

Overdetermined System of Equations

Solve the linear least squares problem

1
min §]|Ax—b\|§. (3)
Define
1 o _ 1 7,7 T Lo
f(x) = §HAx—bH2 = 5X A"Ax —b"Ax + ib b
Optimality condition: V f(x) = 0 leads to normal equations
ATAx = ATb (4)

Define pseudo-inverse of matrix A € R™*"

At = (ATA) AT e R

as

Then,
x=A'b
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Direct Solvers and Matrix Decompositions

Diagonal Matrices

(07 0 0 -~ 0 0] [ a2 ] [ b1]
0 ag 0O -~ 0 0 T b2
0 0 [0 % T 0 0 I3 b3
0 0 0 e Op—1 0 Tn—1 bn—l
|0 0 0 0 an| [ Tn | i b, |
b
l‘j =1
Qaj
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Background

Direct Solvers and Matrix Decompositions Types of Matrices

Triangular Matrices

a7 0 0 -+ 0 O|[a ] [ o]
,81 a9 0 e 0 0 X9 bg

X 62 ag 0 0 I3 b3

X X 0 e Qp—1 0 Tn—1 bn—l
| X X X e Bn—1 Qn| | Tn | L by, ]

@ Solve by forward substitution

e I = %
° Ty = bzfaﬁ;ﬂﬂl
o ---

o For upper triangular matrices, solve by backward
substitution
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Background

Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

Additional Matrices

Let A € Rmx"
e Symmetric matrix (only for m = n)
o A = AT (transpose)
@ Orthogonal matrix
s ATA=1,
o Ifm=n: AAT =1,
e Symmetric Positive Definite matrix (only for m = n)

o x'Ax > 0 for all x € R™
o All real, positive eigenvalues

e Permutation matrix (only for m =n), P

o Permutation of rows or columns of identity matrix by
permutation vector p
o For any matrix B, PB = B(p,:) and BP = B(:, p)
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Background

Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

LU Decomposition

Let A € R™*™ be a non-singular matrix.
A=LU (7)

where L € R™*™ lower triangular and U € R™*™ upper
triangular.
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Background
Direct Solvers and Matrix Decompositions Types of Matrices

LU Decomposition

Let A € R™*™ be a non-singular matrix.

o Gaussian elimination transforms a full linear system into
upper triangular one by multiplying (on the left) by a
sequence of lower triangular matrices

Ly---LiA=U
——

L—l
o After re-arranging, written as
A=LU

where L € R™*™ lower triangular and U € R™*™ upper
triangular.
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Background
Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

LU Decomposition - Pivoting

o Gaussian elimination is unstable without pivoting
o Partial pivoting: PA = LU
e Complete pivoting: PAQ = LU

o Operation count: %m3 flops (without pivoting)

@ Useful in solving determined linear system of equations,
Ax=Db

o Compute LU factorization of A

e Solve Ly = b using forward substitution = y
e Solve Ux =y using backward substitution = x

Theorem

A € R™™ has an LU factorization if det A(1:k,1:k) # 0 for
ke{l,...,n—1}. If the LU factorization exists and A is
nonsingular, then the LU factorization is unique.
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Background
Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

MATLAB LU factorization

o LU factorization, partial pivoting applied to L
o [L,U] = 1lu(d)
s A=(P'L)U=-LU
o U upper tri, L lower tri, P row permutation
e Y = 1lu(Ah)
o If A in sparse format, strict lower triangular of Y contains
L and upper triangular contains U
o Permutation information lost
o LU factorization, partial pivoting P explicit
o [L,U,P] = lu(A)
o PA=LU
o [L,U,p] = lu(A,'vector'")
o A(p,:)=LU
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Background

Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

MATLAB LU factorization

o LU factorization, complete pivoting P, Q explicit
o [L,U,P,Q] = lu(a)
o PAQ=LU
e [L,U,p,q] = 1lu(Ah, 'vector")
o A(p,q) =LU
o Additional 1u call syntaxes that give
o Control over pivoting thresholds

e Scaling options
e Calls to UMFPACK vs LAPACK
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Background

Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

In-Class Assignment

Use the starter code (starter_code.m) below to:
o Compute LU decomposition of using [L,U] = 1u(A);

o Generate a spy plot of L and U
o Are they both triangular?

o Compute LU decomposition with partial pivoting
o Create spy plot of PxA (or A(p, :)), L, U

o Compute LU decomposition with complete pivoting
o Create spy plot of PxAxQ (or A(p,q)), L, U

load matrixl.mat

A = sparse(linsys.row,linsys.col, linsys.val);
b = linsys.b;

clear linsys;
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Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

Symmetric, Positive Definite (SPD) Matrix

Let A € R™ ™ be a symmetric matrix (A = AT), then A is
called symmetric, positive definite if

xTAx >0 vV x e R™.

It is called symmetric, positive semi-definite if x” Ax > 0 for all
x € R™,
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Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

Cholesky Factorization

Let A € R™*™ be symmetric positive definite.

o Hermitian positive definite matrices can be decomposed
into triangular factors twice as quickly as general matrices
o Cholesky Factorization
o A variant of Gaussian elimination (LU) that operations on
both left and right of the matrix simultaneously
o Exploits and preserves symmetry

The Cholesky factorization can be written as
A =R'R=LL"
where R € R™*™ upper tri and L € R™*™ lower tri.

Theorem

Every hermitian positive definite matriz A € R™ ™ has a
unique Cholesky factorization. The converse also holds.
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Background
Direct Solvers and Matrix Decompositions Types of Matrices
Decompositions

Cholesky Decomposition

o Cholesky decomposition algorithm
e Symmetric Gaussian elmination
@ Operation count: %m3 flops

. m(m+1)
e Storage required < ——5—*

e Depends on sparsity
o Always stable and pivoting unnecessary
o Largest entry in R or L factor occurs on diagonal
@ Pre-ordering algorithms to reduce the amount of fill-in
o In general, factors of a sparse matrix are dense
o Pre-ordering attempts to minimize the sparsity structure of
the matrix factors
o Columns or rows permutations applied before factorization
(in contrast to pivoting)
o Most efficient decomposition for SPD matrices
o Partial and modified Cholesky algorithms exist for non-SP
o Usually just apply Cholesky until problem encountered
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Background

Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

Check for symmetric, positive definiteness

For a matrix A, it is not possible to check x” Ax for all x. How
does one check for SPD?

o FEigenvalue decomposition

Theorem

If A € R™*™ s a symmetric matriz, A is SPD if and only if
all its eigenvalues are positive.

o Very expensive/difficult for large matrices

o Cholesky factorization

o If a Cholesky decomposition can be successfully computed,
the matrix is SPD /
e Best option
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Background
Direct Solvers and Matrix Decompositions Types of Matrices
Decompositions

MATLAB Functions

o Cholesky factorization
e R = chol (a)
o Return error if A not SPD
o [R,p] = chol(d)
o If ASPD, p=0
o If A not SPD, returns Cholesky factorization of upper
p—1xp—1 block
o [R,p,S]=chol (a)
o Same as previous, except AMD preordering applied
o Attempt to maximize sparsity in factor
e Sparse incomplete Cholesky (ichol, cholinc)
e R = cholinc (A, droptol)
e Rank 1 update to Cholesky factorization
o Given Cholesky factorization, RTR = A
o Determine Cholesky factorization of rank 1 update:
RTR = A + xx” using R
o Rl = cholupdate (R, x)
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Background
Direct Solvers and Matrix Decompositions Types of Matrices
Decompositions

In-Class Assignment

Same starter code (starter_code.m) from LU assignment to:
o Compute Cholesky decomposition using R = chol (&) ;
o Generate a spy plot of A and R
o Is R triangular?
o Compute Cholesky decomposition after reordering the
matrix with p = amd (2)
e Ramd = chol (A(p,p));
o Create spy plot of Ramd

o Compute incomplete Cholesky decomposition with
cholinc or ichol using drop tolerance of 1072

o Create spy plot of Rinc

o How do the sparsity pattern and number of nonzeros
compare?
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Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

QR Factorization

Consider the decomposition of A € R™*™ full rank, as
-1 R
A-[a q [0] - QR (9)

where Q € R™*" and [Q Q] € R™*™ are orthogonal and
R € R™™ is upper triangular.

Theorem

Every A € R™™ (m > n) has a QR factorization. If A is full
rank, the decomposition in unique with diag R > 0.
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Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

Full vs. Reduced QR Factorization

X X X||x x
X X X

X X X||x x
0 x X

X X X||x x
A= 0 0 x

X X X||x x
X X X||x x 000
0O 0 O

X X X||x x

~ R
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Background
Direct Solvers and Matrix Decompositions Types of Matrices

QR Factorization

Algorithms for computing QR factorization
Gram-Schmidt (numerically unstable)

o Modified Gram-Schmidt

o Givens rotations

o Householder reflections

(]

Operation count: 2mn? — %n?’ flops

e n(n+1)
Storage required: mn + —5—

May require pivoting in the rank-deficient case
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Background

Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

Uses of QR Factorization

Let A = QR be the QR factorization of A
o Pseudo-inverse
o Ai = (ATA)'AT = (R"R)” RTQ” =R'Q”
@ Solution of least squares
e x=Ab=R1Q"b
e Very popular direct method for linear least squares

1

@ Solution of linear system of equations
e x=A""%x=R'Q"b
o Not best option as Q € R™*™ is dense and R € R™*™

o Extraction of orthogonal basis for column space of A
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Direct Solvers and Matrix Decompositions Types of Matrices
Decompositions

MATLAB QR function

Let A € R™*™ full rank

e For general matrix, A (dense or sparse)
o Full QR factorization
e [Q,R] = gr(A): A=QR
o [Q,R,E] = gqr(A): AE = QR
e Qe R™™ R eR™™ E e R"™" permutation matrix
e Economy QR factorization
e [Q,R]=gr(A,0): A=QR
e [Q,R,E] = agr(A,0): A(LE)=QR
e Qe R™™ R eR"™" E € R"” permutation vector
o For A sparse format
o Q-less QR factorization
e R= gr(A),R = gr(A,0)
o Least-Squares
e [C,R] gr (A,B), [C,R,E] = gr(A,B),
[C,R] = gr(A,B,0), [C,R,E] = gr(A,B,0)
o min||[Ax —b|| = x=ER'C
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Direct Solvers and Matrix Decompositions Types of Matrices

Let A = QR be the QR factorization of A

e QR of A with a column/row removed
e [Q1,R1] = grdelete(Q,R, J)
o QR of A with column j removed (without re-computing
QR from scratch)
e [Q1,R1] = grdelete(Q,R,J, 'row")
o QR of A with row j removed (without re-computing QR
from scratch)
@ QR of A with vector x inserted as jth column/row
e [Q1,R1] = grinsert (Q,R, j, x)
e QR of A with x inserted in column j (without
re-computing QR from scratch)
e [Q1,R1] = grinsert(Q,R,Jj,x, 'row')
e QR of A with x inserted in row j (without re-computing
QR from scratch) )
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Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
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Assignment

Suppose we wish to fit an m degree polynomial, or the form
(10) to n data points, (x;,y;) fori=1,...,n.

amx™ + @ 12™ 4 Farx + ag (10)

One way to approach this is by solving a linear least squares
problem of the form

min|[Va — y]| (11)
where x = [am, Gm—1,.-.,00], Y = [y1,---Yn], and V is the
Vandermonde matrix

|

v R
1

amogmel o g 1
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Assignment

Given the starter code (gqr_ex.m) below,

o Fit a polynomial of degree 5 to the data in
regression_data.mat

o Plot the data and polynomial

%% QR (regression)
load('regression_data.mat'); %Defines x,vy
xfine = linspace (min(x),max(x),1000);
order = 5;

VV = vander (x) ;
V = VV(:,end—order:end);
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O Data
Polynomial

0.5 0.6 0.7 0.8
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Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
Backslash

De-mystify MATLAB’S midivide (\)

e Diagnostics for square matrices
o Check for triangularity (or permuted triangularity)

o Check for zeros
e Solve with substitution or permuted substitution

o If A symmetric with positive diagonals

o Attempt Cholesky factorization
o If fails, performs symmetric, indefinite factorization

o A Hessenberg
o Gaussian elimination to reduce to triangular, then solve
with substitution
o Otherwise, LU factorization with partial pivoting
o For rectangular matrices

o Overdetermined systems solved with QR factorization
o Underdetermined systems, MATLAB returns solution wit
maximum number of zeros
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Direct Solvers and Matrix Decompositions Types of Matrices
Matrix Decompositions
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De-mystify MATLAB’S midivide (\)

e Singular (or nearly-singular) square systems

o MATLAB issues a warning
o For singular systems, least-squares solution may be desired
I(ﬂ and b {I[c))]
o From mldivide diagnostics, rectangular system
immediately initiates least-squares solution
e Multiple Right-Hand Sides (RHS)
o Given matrix A € R™*" and given k RHS, B € R"**
o X = A\B
e Superior to X (:, j) = A\B (:, J) as matrix only needs to
be factorized once, regardless of k

o Make system rectangular: A <« {

o In summary, use backslash to solve Ax= b with a direct
method
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Spectral Decompositions

Outline

@ Spectral Decompositions
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Spectral Decompositions

Eigenvalue Decomposition (EVD)

Let A € R™*™  the Eigenvalue Decomposition (EVD) is
A =XAX! (12)

where A is a diagonal matrix with the eigenvalues of A on the
diagonal and the columns of X contain the eigenvectors of A.

Theorem
If A has distinct eigenvalues, the EVD exists. J
Theorem
If A is hermitian, eigenvectors can be chosen to be orthogonal. J
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Spectral Decompositions

Eigenvalue Decomposition (EVD)

Only defined for square matrices
e Does not even exist for all square matrices
o Defective - EVD does not exist
o Diagonalizable - EVD exists
All EVD algorithms must be iterative

Figenvalue Decomposition algorithm

o Reduction to upper Hessenberg form (upper tri + subdiag)
o Iterative transform upper Hessenberg to upper triangular

Operation count: O(m?)

(]

Storage required: m(m + 1)
Uses of EVD

o Matrix powers (A¥) and exponential (e?)
o Stability /perturbation analysis
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Spectral Decompositions

MATLAB EVD algorithms (eig and eigs)

o Compute eigenvalue decomposition of AX = XD
o Eigenvalues only: d = eig(X)
o Eigenvalues and eigenvectors: [X,D] = eig (X)
@ eig also used to computed generalized EVD: Ax = ABx
o E = eig(A,B)
e [V,D] = eig(A,B)
o Use ARPACK to find largest eigenvalues and
corresponding eigenvectors (eigs)
o By default returns 6 largest eigenvalues/eigenvectors
o Same calling syntax as eig (or EVD and generalized EVD)
e eigs (A, k), eigs (A, B, k) for k largest
eigenvalues/eigenvectors
eigs (A, k,sigma), eigs (A, B, k, sigma)

o If sigma a number, e-vals closest to sigma
o If "LM" or '"SM', e-vals with largest/smallest e-vals
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Spectral Decompositions

Singular Value Decomposition (SVD)

Let A € R™*" have rank r. The SVD of A is
_ -1 0 ~1* T
A=|U T {0 0} v V] —usv (13)

where U € R™*" and U € R™* (™) orthogonal, & € R™"
diagonal with real, positive entries, and V € R™ " and
V e R™ (=) orthogonal.

Theorem

Every matriz A € R™*"™ has a singular value decomposition.

The singular values {o;} are uniquely determined, and, if A is
square and the o are distinct, the left and right singular vectors g
{u;} and {v;} are uniquely determined up to complex signs.
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Full vs. Reduced SVD

X X X|[x x
X X X||x x x 010
0 x| 0 X X X
A= i i i i i 0 0 X X X
v % xllx 0 0 X X X
0 0 ~”
X X X||x x B , [V*]
N 0 vT
U U] [0 0]
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Spectral Decompositions

Singular Value Decomposition (SVD)

e SVD algorithm
o Bi-diagonalization of A
o Iteratively transform bi-diagonal to diagonal
e Operation count (depends on outputs desired):
o Full SVD: 4m?n + 8mn? + 9n3
o Reduced SVD: 14mn? + 8n?
o Storage for SVD of A of rank r
o Full SVD: m? +n? +r
o Reduced SVD: (m +n+ 1)r
o Applications

Low-rank approximation (compression)
Pseudo-inverse /Least-squares

Rank determination

Extraction of orthogonal subspace for range and null space
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Spectral Decompositions

MATLAB SVD algorithm

o Compute SVD of A = UXV* € R™*"
e Singular vales only: s = svd(A)
o Full SVD: [U,s,V] = svd(d)
o Reduced SVD
e [U,S,V] = svd(A,0)

e [U,S,V] = svd(A, 'econ')
o Equivalent for m > n
e [U,V,X,C,S] = gsvd(A,B) to compute generalized SVD
¢ A =UCX*
e B = VSX*

e C*C+S*S=1
o Use ARPACK to find largest singular values and
corresponding singular vectors (svds)
o By default returns 6 largest singular values/vectors
o Same calling syntax as eig (or EVD and generalized EVD
o svds (A, k) for k largest singular values/vectors
e svds (A, k,sigma)




Spectral Decompositions

Condition Number, s

o The condition number of a matrix, A € R™*" is defined as

= Omax _ Amax (14)

Omin Amin

where oy and opax are the smallest and largest singular
vales of A and Ay, and Apax are the smallest and largest
eigenvalues of ATA.
o x = 1 for orthogonal matrices
@ k = oo for singular matrices
@ A matrix is well-conditioned for k close to 1; ill-conditioned
for k large
e cond: returns 2-norm condition number
e condest: lower bound for 1-norm condition number
o rcond: LAPACK estimate of inverse of 1-norm condition
number (estimate of ||A7!|;)
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Outline

@ Iterative Solvers
@ Preconditioners
@ Solvers
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Iterative Solvers

Consider the linear system of equations
Ax=Db (15)

where A € R™*™ nonsingular.

o Direct solvers

o O(m?) operations required

o O(m?) storage required (depends on sparsity)

o Factorization of sparse matrix not necessarily sparse

o Not practical for large-scale matrices

o Factorization only needs to be done once, regardless of b
o Iterative solvers

o Solve linear system of equations iteratively

o O(m?) operations required, O(nnz(A)) storage

o Do not need entire matriz A, only products Av

e Preconditioning usually required to keep iterations low

o Intended to modify matrix to improve condition number
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Preconditioning

Suppose L € R™*™ and R € R™*™ are easily invertible.

e Preconditioning replaces the original problem (Ax = b)
with a different problems with the same (or similar)
solution.

o Left preconditioning

o Replace system of equations Ax = b with
L 'Ax=L""b (16)

o Right preconditioning
o Define y = Rx
AR 'y =b (17)
o Left and right preconditioning

o Combination of previous preconditioning techniques

L'AR 'y=L"'p
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Preconditioners

Preconditioner M for A ideally a cheap approximation to A1,
intended to drive condition number, «, toward 1

Typical preconditioners include
e Jacobi
o M =diag A
o Incomplete factorizations
o LU, Cholesky
o Level of fill-in (beyond sparsity structure)

o Fill-in 0 = sparsity structure of incomplete factors same
as that A itself

o Fill-in > 0 = incomplete factors more dense that A

o Higher level of fill-in = better preconditioner

o No restrictions on fill-in = exact decomposition —-
perfect preconditioner = single iteration to solve
Ax=Db
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MATLAB preconditioners

Given square matrix A € R™*™
@ Jacobi preconditioner
o Simple implementation: M = diag(diag(A))
o Careful of Os on the diagonal (M nonsingular)
o If Ajj = 0, set Mj]' =1
o Sparse storage (use spdiags)
o Function handle that returns M~ !v given v
o Incomplete factorization preconditioners
e [L,U] = ilu(A,SETUP), [L,U,P] = ilu(A, SETUP)
e SETUP: TYPE, DROPTOL, MILU, UDIAG, THRESH
o Most popular and cheapest: no fill-in, ILU(0)
(SETUP.TYPE="nofill")
e R = cholinc (X,0PTS)
OPTS: DROPTOL, MICHOL, RDIAG
e R = cholinc(X,'0"), [R,p] = cholinc(X,'0")
No fill-in incomplete Cholesky
Two outputs will not raise error for non-SPD matrix
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Common Iterative Solvers

o Linear system of equations Ax = b
o Symmetric Positive Definite matrix
o Conjugate Gradients (CG)
e Symmetric matrix
e Symmetric LQ Method (SYMMLQ)
e Minimum-Residual (MINRES)
o General, Unsymmetric matrix
e Biconjugate Gradients (BiCG)
o Biconjugate Gradients Stabilized (BiCGstab)
o Conjugate Gradients Squared (CGS)
o Generalized Minimum-Residual (GMRES)
o Linear least-squares min |[|Ax — b||2

o Least-Squares Minimum-Residual (LSMR)
o Least-Squares QR (LSQR)
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MATLARB Iterative Solvers

o MATLAB’s built-in iterative solvers for Ax = b for
A e RMXm
e pcqg, bicg, bicgstab, bicgstabl, cgs, minres
gmres, lsqr, gmr, symmlg, tmgmr
o Similar call syntax for each
o [x,flag, relres,iter, resvec] =
solver (A, b, restart,tol, maxit, M1, M2 x0)
o Outputs
e x - attempted solution to Ax = b

e flag - convergence flag
o relres - relative residual W at convergence
e iter - number of iterations (inner and outer iterations for

certain algorithms)

e resvec - vector of residual norms at each iteration
||Ib — Ax||, including preconditioners if used
(M~ (b - Ax) ])
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MATLARB Iterative Solvers

o Similar call syntax for each

o [x,flag, relres,iter,resvec] = .

solver (A,b, restart,tol, maxit,M1l,M2, x0)
o Inputs (only A, b required, defaults for others)

o A - full or sparse (recommended) square matrix or function

handle returning Av for any v € R™
b - m vector
restart - restart frequency (GMRES)
tol - relative convergence tolerance
maxit - maximum number of iterations
M1, M2 - full or sparse (recommended) preconditioner
matrix or function handler returning M_lM_lv for any
v € R™ (can specify only M or not precondition system by _ .
not specifying M1, M2 or setting M1 = [] and M2=1[1])
o x0 - initial guess at solution to Ax = b
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Assignment

iterative_ex.m
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